Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer.
نویسندگان
چکیده
The nuclear receptor retinoid X receptor (RXR) can regulate transcription through homotetramers, homodimers, and heterodimers with other nuclear receptors such as the vitamin D receptor (VDR). The mechanisms that underlie the nuclear import of RXR, VDR, and RXR-VDR heterodimers were investigated. We show that RXR and VDR translocate into the nucleus by distinct pathways. RXR strongly bound to importinbeta and was predominantly nuclear in the absence of ligand. Importin binding and nuclear localization of RXR were modestly enhanced by its ligand, 9-cis-retinoic acid. On the other hand, VDR selectively associated with importinalpha. Importin association and correspondingly nuclear import of VDR were markedly augmented by 1,25(OH)2D3. RXR-VDR dimerization inhibited the ability of RXR to bind importinbeta and to mobilize into the nucleus using its own nuclear localization signal. In contrast, VDR recruited RXR-VDR heterodimers to importinalpha and mediated nuclear import of the heterodimers in response to 1,25(OH)2D3. Hence nuclear import of RXR-VDR heterodimers is mediated preferentially by VDR and is controlled by the VDR ligand. The observations reveal a novel mechanism by which an RXR heterodimerization partner dominates the activity of the heterodimers.
منابع مشابه
Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors.
The vitamin D receptor (VDR) acts as heterodimer with the retinoid X receptor alpha (RXR) to control transcriptional activity of target genes. To explore the influence of heterodimerization on the subcellular distribution of these receptors in living cells, we developed a series of fluorescent-protein chimeras. The steady-state distribution of the yellow fluorescent protein-RXR was more nuclear...
متن کاملNuclear Receptors, RXR, and the Big Bang
Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the...
متن کاملDifferential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers.
Retinoic acid, thyroid hormone, and vitamin D receptors preferentially activate target genes through response elements that consist of direct repeat arrangements of a core recognition motif of consensus sequence AGGTCA. We present evidence that the preference for direct repeat elements arises from two fundamental differences from steroid hormone receptors. First, retinoic acid, thyroid hormone,...
متن کاملAll natural DR3-type vitamin D response elements show a similar functionality in vitro.
The vitamin D(3) receptor (VDR), which is the nuclear receptor for 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], acts primarily as a heterodimer with the retinoid X receptor (RXR) and binds preferentially to directly repeated arrangements of two hexameric binding sites with three spacing nucleotides [DR3-type vitamin D response elements (VDREs)]. In this study, all presently known nat...
متن کاملVitamin D receptor contains multiple dimerization interfaces that are functionally different.
The vitamin D receptor mediates the signal of 1 alpha, 25-dihydroxyvitamin D3 by binding to vitamin D responsive elements in DNA as a homodimer or as a heterodimer composed of one vitamin D receptor subunit and one retinoid X receptor subunit. We have mapped the dimerization interfaces of the vitamin D receptor that is involved in homo- or heterodimer formation in the absence of DNA. While dele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 48 شماره
صفحات -
تاریخ انتشار 2005